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Abstract. We study a small piece of two-dimensional Toda lattice as a complex dynamical
system. In particular, it is shown analytically how the Julia set, which appears when the piece
is deformed, disappears as the system approaches the integrable limit.

1. Introduction

The two-dimensional Toda lattice is one of the soliton equations which has become more
and more important as a key object in theoretical physics. It was first formulated by
Hirota in 1981 [1] as a discrete version of the two-dimensional continuous time Toda lattice
and its equivalence to the KP hierarchy was shown by Miwa [2]. When quasi-periodic
solutions are substituted, it is nothing but the identity known as Fay’s trisecant formula
which characterizes algebraic curves.

This equation has become known in other fields of physics in the last ten years. It was
shown to be satisfied by the string amplitudes in particle physics [3]. More recently there
have appeared papers demonstrating the unexpected correlation of this equation with other
topics in physics. The transfer matrix of the solvable lattice model withAl symmetry, for
example, was shown to satisfy this equation [4, 5]. This equation has also been proven to
unify discrete Painlev́e equations [6]. The connection of solvable cellular automata to this
equation offers another example [7].

Completely integrable nonlinear systems must play fundamental roles in various
phenomena in physics. It is remarkable that many integrable systems in different fields
are unified into a single equation. We are interested in clarifying the ultimate notion of
integrability of the systems. Investigation of such systems themselves, however, will not
reveal all features of the systems. The real meaning of integrability will be clarified only
in comparison with non-integrable systems.

An arbitrary deformation of the two-dimensional Toda lattice will destroy integrability
and create chaos. Since the system contains an infinite number of degrees of freedom it is
extremely difficult to study analytically the behaviour of the transition from non-integrable
to integrable phases. It should be recalled that very little is known about analytical properties
of non-integrable systems. The main part of the studies of complex dynamical systems have
been limited to simple systems with one degree of freedom.

Very recently we pointed out [8] that a set of lattice points, which form a parallelogram
in the two-dimensional lattice space, constitute a piece of the Toda lattice. We call it a Toda
molecule [9] since it is essentially what is intended by this name, but it has been used in a
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slightly different context in the literature. The remarkable fact is that the small pieces can
be separated from other parts without losing any properties of the original Toda lattice.

The purpose of this paper is to study in detail analytical properties of the smallest piece
of Toda molecules. The smallest Toda molecule is a smallest parallelogram of four lattice
points. We will call it a Toda atom for convenience. Since every Toda molecule preserves
properties possessed by the Toda lattice, we can study analytical properties of the system
from the knowledge of a Toda atom. In the first part of this paper we show that the time
evolution of a Toda atom is described by an iterative Möbius map. The form invariance of
this map certificates integrability of this system. In the second part of this paper we will
consider a deformation of this piece. Under generic deformation chaos will be generated
through the time evolution. We are especially concerned with the analytical property of the
Julia set as the system approaches to the integrable map. We will show how the Julia set
converges to the points on the orbit of a Möbius map as a parameter, which interpolates
between integrable and nonintegrable maps, approaches the critical limit.

2. Pieces of Toda lattice

In this section we show that the two-dimensional Toda lattice can be cut into small pieces
without losing any properties possessed by the original system. To begin with, let us write
down the equation which was derived by Hirota as a discrete version of the two-dimensional
continuous time Toda lattice [1]:

αgn(l + 1, m)gn(l,m+ 1)+ βgn(l,m)gn(l + 1, m+ 1)

−(α + β)gn+1(l + 1, m)gn−1(l, m+ 1) = 0 α, β ∈ C, l, m, n ∈ Z. (1)

We called this equation the Hirota bilinear difference equation (HBDE)†. This is a nonlinear
system defined on the three-dimensional lattice space. Our key observation is the following.
For a fixed point of the lattice(l, m, n) = (l̄, m̄, n̄), we denote byA the set of points (̄l, m̄, n̄),
(l̄ + 1, m̄, n̄), (l̄, m̄ + 1, n̄), (l̄ + 1, m̄ + 1, n̄), (l̄ + 1, m̄, n̄ + 1), (l̄, m̄ + 1, n̄ − 1). Then if
gn(l,m) is a solution of (1),

f (l,m, n) =
{
gn(l,m) (l,m, n) ∈ A
0 otherwise

(2)

is also a solution of (1). This is the smallest piece of the Toda lattice.
The proof is simple. BecauseA is surrounded by zero, every equation on other pieces

is automatically satisfied. The result can be easily generalized to a larger parallelogram
prism when it is surrounded by zero. We call it a Toda molecule according to [9]. Then
it will be natural to call (2) a Toda atom. If there are many Toda molecules in the three-
dimensional lattice space separated by zeros from each other it is again a solution of (1).
A slice perpendicular to thel axis of such example is presented in figure 1.

For an illustration let us consider the one soliton state localized on the smallest
parallelogram specified by(m, n) = (0, 0), (0, 1), (1,−1), (1, 0) on the (m, n) lattice plane,
but allowed to range all integers alongl. Now we recall that in the usual lattice space the
one soliton solution is given by [2, 10]

f 1sol(l, m, n) =
∏
j

(1− azj )−kj +
∏
j

(1− bzj )−kj . (3)

Here a, b are arbitrary constants and{zj } are parameters which determine the velocity of
the soliton. {kj } are variables taking values on integers. We can choose any three among

† This equation is also called the Hirota–Miwa equation in recent literature.
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{kj } to relate them to our variables(l, m, n). Let k1, k2, k3 be such a three and relate them
according to

k1 = m+ n− 1
2 k2 = −m− 1

2 k3 = l − n− 1
2. (4)

Writing (3) explicitly we find

f 1sol(l, 0, 0) = A(1− az3)
−l + B(1− bz3)

−l

f 1sol(l, 1, 0) = A1− az2

1− az1
(1− az3)

−l + B 1− bz2

1− bz1
(1− bz3)

−l

f 1sol(l, 0, 1) = A1− az3

1− az1
(1− az3)

−l + B 1− bz3

1− bz1
(1− bz3)

−l

f 1sol(l, 1,−1) = A1− az2

1− az3
(1− az3)

−l + B 1− bz2

1− bz3
(1− bz3)

−l (5)

where

A :=
√
(1− az1)(1− az2)(1− az3) B :=

√
(1− bz1)(1− bz2)(1− bz3).
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We see from (5) that all points belonging to the same piece behave similarly. The parameters
are related toα, β of (1) by

α = z1(z2− z3) β = z2(z3− z1)

for (5) to satisfy the HBDE. If we define the amplitudeϕmn(l) by

ϕmn(l) := f (l + 1, m, n)f (l − 1, m, n)

f 2(l, m, n)
− 1 (6)

it behaves as

ϕ1sol
00 (l) =

sinh2p

cosh2(pl + χ) p := 1

2
ln

1− az3

1− bz3
χ := 1

2
ln
B

A
. (7)

This represents a localized peak along thel axis. The other amplitudesϕmn(l) behave almost
the same but different by the values of the phaseχ .

If we consider an evolution of the system in variablel, a Toda atom is composed of
four lattice points. Since there is only one equation of motion (1), they are not independent
variables. Three of them can be chosen arbitrarily leaving one to be determined by the
equation. Letzl bef (l, 0, 0). The other three could be either dependent or independent of
zl . If they are independent ofzl , the equation of motion is linear inzl . On the other hand, if
they do depend onzl they are allowed to be at most linear inzl , for the equation to remain
Hirota bilinear form. Namely, we can write

f (l,m, n) = Am,nzl + Bm,n (m, n) = (0, 0), (1, 0), (0, 1), (1,−1) (8)

with A0,0 = 1, B0,0 = 0. Upon substituting them together into the HBDE, it is easy to see
that we obtain an equation of the form

zl+1 = Azl + B
Czl +D

A = −βB1,0+ (α + β)B0,1A1,−1 B = (α + β)B0,1B1,−1

C = (α + β)(A1,0− A0,1A1,−1) D = αB1,0− (α + β)A0,1B1,−1. (9)

(9) is a Möbius map. Therefore, the map is integrable.
If we remember that the HBDE is invariant under the transformation off (l,m, n)→

eal+bm+cnf (l,m, n), the one soliton solution (5) offers an example of (8).
The solution of (9) can be obtained as follows. A Möbius map has three fixed points. By

an appropriate transformation,zl → φ ◦ zl ◦φ−1, one of the fixed points can be transformed
into 0. After the transformation the map will have the form

zl+1 = µ zl

1+ νzl . (10)

(10) is easily solved for an arbitrary initial valuez0 to get

zl = µlz0

1+ ν(1− µl/1− µ)z0
. (11)

Applying to this the inverse transformationzl → φ−1 ◦ zl ◦ φ, the general solution to (9)
is obtained. We call the map (10) the integrable logistic map (ILM). The meaning of this
name will become clear later.

We notice that (10) corresponds to the case in which one of the lattice points is fixed
constant and the other three points behave the same:

f ILM (l, 0, 0) = f ILM (l, 0, 1) = f ILM (l, 1,−1) =: zl

f ILM (l, 1, 0) = µ− 1

ν
µ = −β

α
. (12)



Complex analysis of a piece of Toda lattice 6955

What does the amplitude look like in this case? To see we substitute (11) into (6) and
get

ϕILM = sinh2p

cosh2(pl + χ)− cosh2p
p := 1

2
lnµ χ := 1

2
ln

µz0

1− µ+ νz0
. (13)

The similarity of this result to the one soliton solution (7) must be apparent.
We may further simplify the equation by

f lin(l, 0, 0) =: zl f lin(l, 1,−1) = f lin(l, 1, 0) = 1− 1

µ
f lin(l, 0, 1) = c (14)

wherec is a constant.
The map turns out to be linear

zl+1 = µzl + (1− µ)c (15)

and yields the solution

zl = µl(z0− c)+ c. (16)

The corresponding amplitude is

ϕ lin(l) = sinh2p

cosh2(pl + χ) p = 1

2
lnµ χ = 1

2
ln
z0− c
c

(17)

which is again the form of (7).

3. Generalized logistic map

As we have learned in the preceeding section, the smallest piece of Toda lattice already
possesses useful information of the integrable dynamical systems. In this section we study
a deformation of the Toda atom. There are many different forms of deformation, some of
which preserve integrability and some which destroy it. Since we are interested in studying
the transition between integrable and non-integrable maps, we must break the integrability
of the Toda atom.

For this purpose we recall that the Toda molecules have a characteristic form as seen in
figure 1. Their cross sections in the (m, n) plane are parallelograms declined to the same
direction. This is due to the property of the Toda atom defined in (2). The very reason
for this asymmetry comes from the asymmetry† of the HBDE under the exchange ofl and
m as seen in (1). The equation in which the role ofl andm in (1) are exchanged is also
integrable. In fact, we could start from this equation without changing any of the results.

From this argument we are tempted to consider the following deformation of the HBDE:

αgn(l + 1, m)gn(l,m+ 1)+ βgn(l,m)gn(l + 1, m+ 1)− (α + β)[(1− γ )δgn+1(l + 1, m)

+γgn+1(l, m+ 1)] × [(1− γ ′)δ′gn−1(l, m+ 1)+ γ ′gn−1(l + 1, m)] = 0.
(18)

We note that this equation is integrable whenγ = γ ′ = 0 andδδ′ = 1, or γ = γ ′ = 1.
Integrability of other cases is not known at this point. Moreover, we are not able to separate
some small part of the lattice independently from the rest as was done to get a Toda atom.
Nevertheless, it is worth studying (18) defined on a portion of the lattice shown in figure 2(a).

† If we had chosen another set of variables, the HBDE would look more symmetric and the corresponding Toda
atom could be either cubic or octahedron [11]. We have used asymmetric variables so that deformations can be
discussed.
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In order to proceed further we have to specify the model so that we can study analytical
properties of the map explicitly. We will consider, in the following discussion, the map
given by (10) and its deformation. We also restrict our argument to the case ofγ ′ = 0,
δ = δ′−1 = ν/µ in (18) for simplicity and define (figure 2(b))

f GLM(l, 0, 0) = f GLM(l, 0, 1) = f GLM(l, 1,−1) = f GLM(l, 1, 1) =: zl

f GLM(l, 1, 0) = µ− 1

ν
(19)

whereµ is a constant.
The dynamics of this model is described by the map

zl+1 = f (zl) := µ zl(1− γ zl)
1+ ν(1− γ )zl zl ∈ C, l ∈ Z. (20)

We call this map a generalized logistic map (GLM). Some properties are listed below.
(1) Whenγ = 1, the map becomes the ordinary logistic map studied extensively in the

literature.
(2) The GLM becomes the logistic equation for all values of the parametersγ , µ, ν

when the continuous limit of the variablel is taken. To show this let us introduce new
variablesu and new parametersa andh,

u(l) := ν + γµ− γ ν
µ− 1

zl ah := µ− 1. (21)

We replacezl+1 by zl+h and take the limith → 0. We will find that (20) reduces to the
logistic equation

du

dl
= au(1− u). (22)

(3) The GLM includes (10) as the special case withγ = 0. This explains the name of
the ILM used for (10).

(4) The GLM generates a Julia set as long asγ 6= 0. Hence it is not integrable except
for γ = 0. This will be discussed later.

The most important feature of the GLM is that it interpolates a non-integrable map to
an integrable map in the limit of continuous deformation. This fact enables us to study
analytically the transition between the two phases. The problem we are concerned with in
what follows is the analytical properties of the map (20). To proceed further it is more
convenient to convert the map (20) into the standard form of the rational map of degree 2,

F(z) = φ ◦ f ◦ φ−1(z) = z(z + λ)
1+ λ′z eiθ (23)

by the Möbius transformation

φ(x) = (1− µ)x
(νγ − ν − µγ )x + (νγ − ν − γ )µ e−iθ

(24)

where

λ = µ e−iθ λ′ = νγ − ν − 2µγ + µ2γ

(νγ − ν − γ )µ eiθ . (25)

The corresponding integrable map turns out to be the following case:

F(z) = µz = λ eiθ z if γ = 0, i.e. λλ′ = 1. (26)
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The main feature of a dynamical system is determined by the nature of fixed points of
the map. Namely, the multiplier3 at a fixed pointa of the mapϕ(z) is defined by the
derivative of the map ata:

3 := dϕ(z)

dz

∣∣∣∣
z=a
. (27)

The fixed pointa is an attractor of the map if|3| < 1, a repeller if|3| > 1, and neutral if
|3| = 1.

In the case of the GLM, the fixed points are easily found as

0 p = −λ− 1− λλ′
λ′ − eiθ

∞. (28)

The corresponding multipliers are

30 = λ eiθ 3p = 2− λ eiθ − λ′ e−iθ

1− λλ′ 3∞ = λ′ e−iθ . (29)

In the integrable limitλλ′ → 1, we observe the following characteristic features.
(1) Since

|303∞| → 1 (30)

the map converges either to 0 or to∞ depending on|λ| = |µ| < 1 or>1.
(2) The fixed pointp approaches−λ and it turns to a superrepeller

|3p| → ∞. (31)

4. Julia sets

In the complex dynamical systems, chaos appears from a Julia set. Given the mapf (z) on
a Riemann spherēC = C ∪ {∞}, the Riemann sphere is divided into two parts depending
on whether the orbits converge or not. A set of initial values whose orbits, together with
their neighbourhood, converge is called a Fatou setF(f ). On the other hand, a set which
does not is called a Julia setJ (f ). This definition leads to the fact that the Julia set does
not contain any attractive periodic cycle. In this sense the orbit in the Julia set is chaotic.

By definition, a Fatou set and a Julia set are invariant with respect to the map, that is

f (F ) = f −1(F ) = F f (J ) = f −1(J ) = J.
It is easy to understand that attractive fixed points belong to the Fatou set. In contrast, it
is known that repulsive fixed points belong to the Julia set [12]. Then we can compute the
Julia set by inversely mapping a repulsive fixed point as an initial value. We show some
of their examples in figure 3 for the map of (23).

The Julia set does not exist if the map is completely integrable. Integrable maps converge
to orbits which are predictable for any given initial values. Conversely, if there exists an
orbit which is not predictable for some initial values, the map is not integrable. Therefore,
a Julia set appears in non-integrable maps, but not in integrable maps.

In our standard map of degree 2 given by (23), a Julia set is known to exist except for
at the integrable pointλλ′ = 1. We would like to know how it disappears from the complex
plane of the variable when the parameters approach the limitλλ′ → 1. We have given in
[13] an argument about this problem for some limited range of parameters. The purpose of
this section is to present another argument which should supplement our previous one.

The inverse map of (23) is easily obtained as

zl = F−1(zl+1) = 1
2(ρzl+1− λ)± 1

2

√
(ρzl+1+ λ)2+ 4zl+1 e−iθ (1− λλ′) (32)
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where we have defined

ρ := λ′ e−iθ . (33)

From this expression it is apparent that the inverse map is not unique but double valued at
every step. As we pointed out above, the inverse map generates points of the Julia set if it
starts from a point on the Julia set. Substituting one value of the Julia set into (32), we get
two points every time. Aftern steps the number of points of the Julia set increases by as
many as 2n+1 − 1. This explains the nature of the Julia set. Some of the points could be
those of periodic maps. They must be subtracted from the number.

In the integrable limitλλ′ → 1 the inverse map (32) is still double valued. The values
are

zl =
{
ρzl+1

−λ. (34)

We note that the second solution does not depend onzl+1, hence is the same at every step
of the map. For (34) to generate the Julia set we must start from a repulsive fixed point.
When |λ| > 1, the origin is such a point. Thence we find from (34) the ‘Julia set’†

J ILM = {−ρnλ | n ∈ N} (35)

for the integrable map. The number of the ‘Julia set’ increases proportionally to the number
of stepsn. Moreover, the element ofJ ILM is equal to−µ−nλ, which is nothing but the
solution exactly expected from the map (26), if it started from−λ.

The next problem we are concerned with is to explore how the Julia set of the GLM
turns into those points of (34) in the limitλλ′ → 1. Since we are interested in the transition
from a non-integrable map to the integrable map, we are to consider small values of|λλ′−1|.
The inverse map (32) can be rewritten as

F−1(z) =
{
ρz

−λ
}
± E(z) (36)

where we put

E(z) := 1

2
(ρz + λ)

(√
1− 4zε e−iθ

(ρz + λ)2 − 1

)
ε := λλ′ − 1. (37)

Note thatE(z) vanishes for small values ofε. To see the behaviour ofE(z) for small ε we
first observe the inequality which is true for allε:

|E(z)| < 3
√
|zε| ∀ε ∈ C. (38)

The proof of this inequality can be found with the following facts.
(1) If |w| < 1,∣∣∣∣ 1√

w
(
√

1− w − 1)

∣∣∣∣ = 1

|√w| |1−
√

1− w| 6 1

|√w| (1−
√

1− |w|)

6 1

|√w| (1− (1− |w|)) = |
√
w| 6 1. (39)

(2) If |w| > 1,∣∣∣∣ 1√
w
(
√

1− w − 1)

∣∣∣∣ = ∣∣∣∣
√

1

w
− 1−

√
1

w

∣∣∣∣ < 3. (40)

† This set does not possess properties expected for the ordinary Julia set. We call it a ‘Julia set’ only in the sense
that it is generated by the inverse map starting from a repeller.
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Substituting

w := 4zε e−iθ

(ρz + λ)2 (41)

into E(z) of (37), we can write

|E(z)| =
√
|zε|

∣∣∣∣ 1√
w
(
√

1− w − 1)

∣∣∣∣ (42)

from which (38) follows.
We can perform the inverse map (38) iteratively. Let us denote the map (36) as

A(z) := ρz + E(z) B(z) := −λ− E(z). (43)

Then the second map becomes

F−2(z) =
{
A(F−1(z))

B(F−1(z))
=



A ◦ A(z)
A ◦ B(z)
B ◦ A(z)
B ◦ B(z).

(44)

After n steps we obtain

F−n(z) = {Aν1 ◦ Bν2 ◦ Aν3 ◦ · · · ◦ Bνn(z)|ν1+ ν2+ · · · + νn = n}. (45)

If we had started from the repeller the above maps would have produced the Julia set
of the GLM. In the following we consider the case|λ| > 1, |λ′| < 1, so that the origin is a
repulsive fixed point and the infinity is an attractive fixed point. SinceE(0) = 0 the origin
is mapped to

A(0) = 0 B(0) = −λ (46)

by the first iteration. The second iteration yields

A2(0) = 0 A ◦ B(0) = −ρλ+ E(−λ)
B ◦ A(0) = −λ B2(0) = −λ− E(−λ). (47)

We note that sinceE(−λ) is the order ofε from (38), all of the points after the second
iteration are in the neighbourhood ofJ ILM . Proceeding similarly, we obtain the Julia set as
follows:

JGLM = {Aν1 ◦ Bν2 ◦ Aν3 ◦ · · · ◦ Bν∞(0)|ν1, ν2, . . . ∈ N}. (48)

We note some important properties which result from this expression.
(1) The invariance of the Julia set under the map: It is obvious from (48) that

JGLM = A(JGLM) ∪ B(JGLM) = F−1(JGLM). (49)

(2) An element of the formB ◦X for anyX ∈ JGLM belongs to the neighbourhood of
−λ, as seen from

B ◦X = −λ− E(X). (50)

(3) An element of the formAs ◦ B ◦X mapsB ◦X to the neighbourhood of−ρsλ. In
fact after applyingA s times we get
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As(B ◦X) = As−1(ρB ◦X + E(B ◦X))
= As−2(ρ2B ◦X + ρE(B ◦X)+ E(A ◦ B ◦X))

= ρsB ◦X +
s−1∑
k=0

ρkE(As−k−1 ◦ B ◦X)

= −ρsλ− ρsE(X)+
s−1∑
k=0

ρkE(As−k−1 ◦ B ◦X). (51)

Since every element ofJGLM, beside 0, is either in the form ofB ◦ X or As ◦ B ◦ X, we
conclude that every element ofJGLM is in the neighbourhood ofJ ILM .

We now proceed to show thatJGLM approaches uniformly toJ ILM asε goes to 0. Since
the infinity is an attractive fixed point, the Julia set must be in a finite region of the complex
plane. We assume that they are inside of the disc of radiusR, i.e., |z| < R, ∀z ∈ JGLM.
Therefore, we can bound|E(z)| by

|E(z)| < 3
√
R
√
|ε| z ∈ JGLM . (52)

The summation of (51) can be estimated as

s−1∑
k=0

|ρkE(As−k−1BX)| <
( s−1∑
k=0

|ρ|k
)

3
√
R
√
|ε| = 1− |ρ|s

1− |ρ| 3
√
R
√
|ε| (53)

which vanishes as|ε| approaches 0 for all integerss because we assume|ρ|s = |λ′|s < 1.
This proves that all points inJGLM approach toJ ILM uniformly in the integrable limit.

In the above we have considered the case of|λ| > 1, |λ′| < 1. The other case
|λ| > 1, |λ′| < 1 can be also treated similarly ifzl is transformed intowl = 1/zl in
(23). Since this transformation is equivalent to the exchange of the role ofλ andλ′ (and
replacement ofθ by −θ ) in (23), we can replay on thew-plane the same argument to the
above.

We conclude this paper by showing pictures which represent the convergence of the Julia
set to the points of iterative maps of the integrable system. The parameters of the map are
fixed atλ = 4 andθ = 0.03π . Under the choice of these parameters,λ′, and henceε, can be
changed freely. In the integrable limitε = 0, J ILM = {−4(1/4n) e−i0.03πn, n = 0, 1, 2, . . .}.
It is shown in figure 3(c). Asε differs from 0 the Julia set expands from these points as seen
in figures 3(b) and (a). The real and imaginary axes are not drawn except in figure 3(a), so
that the points in the neighbourhoods ofz = −4 and 0 are visible in the other figures.

By studying the analytical property of a piece of Toda lattice we have attempted to
clarify how a non-integrable system approaches an integrable one. Our argument is based
on the fact that the two-dimensional Toda lattice can be disjoined into small pieces, which
are integrable by themselves and are called Toda molecules. A Toda molecule is composed
from smaller pieces, which we called Toda atoms. Hence the two-dimensional Toda lattice
is a crystal consisting of Toda atoms. For such a macroscopic system to be integrable every
piece must be joined very carefully not to create a Julia set.

In this connection it is worthwhile recalling that a similar property is possessed
commonly by other integrable models. In the solvable lattice models the partition function is
factorizable into a product of Boltzmann weights. The Yang–Baxter equation is a condition
imposed on the factors to be connected properly. Another example is the factorizability
condition imposed on the string amplitudes which led us to theτ function of the KP
hierarchy. In any case, the connection rule must be such that the symmetry characterizing
the unit blocks is preserved under the coupling.
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(a)

(b)

(c)

Figure 3.

We will be interested in studying analytically properties of the compound system of two
GLM pieces in a forthcoming paper.

Acknowledgments

This work was supported in part by the Grant-in-Aid for general Scientific Research from
the Ministry of Education, Science, Sports and Culture, Japan (No 06835023), and the Fiscal
Year 1996 Fund for Special Research Projects at Tokyo Metropolitan University.

References

[1] Hirota R 1981J. Phys. Soc. Japan50 3787
Hirota R 1983Nonlinear Integrable Systemsed M Jimbo and T Miwa (Singapore: World Scientific) p 17

[2] Miwa T 1982 Proc. Japan Acad.58A 9
Date E, Jimbo M and Miwa T 1982J. Phys. Soc. Japan51 4116
Date E, Jimbo M and Miwa T 1982J. Phys. Soc. Japan51 4125

[3] Saito S 1987Phys. Rev. Lett.59 1798
Saito S 1987Phys. Rev.D 36 1819
Saito S 1988Phys. Rev.D 37 990
Saito S 1989Strings ’88ed S J Gates Jr, C R Preitscopf and W Siegel (Singapore: World Scientific) p 436
Saito S 1991Nonlinear Fields: Classical, Random, Semiclassicaled P Garbaczewski and Z Popowicz

(Singapore: World Scientific) p 286
Sogo K 1987J. Phys. Soc. Japan56 2291
Carroll R W 1991 Topics in Soliton Theory (North-Holland Mathematics Studies 167)(Amsterdam: North-

Holland) ch 3



6962 S Saito et al

[4] Krichever I, Lipan O, Wiegmann P and Zabrodin A 1996 Quantum integrable systems and elliptic solutions
of classical discrete nonlinear equationsPreprint hepth/9604080

[5] Kuniba A, Nakanishi T and Suzuki J 1994Int. J. Mod. Phys.A 9 5215
Kuniba A, Nakanishi T and Suzuki J 1994Int. J. Mod. Phys.A 9 5267
Kuniba A, Nakamura S and Hirota R 1996J. Phys. A: Math. Gen.29 1759
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its Applications. . . The 30th Anniversary of the Toda Lattice. . . (Hayama, Japan, December 1–4)

[7] Tokihiro T, Takahashi D, Matsukidaira J and Satsuma J 1996Int. Symp. Advances in Soliton Theory and its
Applications. . . The 30th Anniversary of the Toda Lattice. . . (Hayama, Japan, December 1–4) Phys. Rev.
76 3247

[8] Saitoh N and Saito S 1996 Coupling of small pieces of Toda lattice and its complex analysisInt. Symp.
Advances in Soliton Theory and its Applications. . . The 30th Anniversary of the Toda Lattice. . . (Hayama,
Japan, December 1–4)

[9] Hirota R 1987J. Phys. Soc. Japan56 4285
[10] Satsuma J 1987J. Phys. Soc. Japan46 359

Freeman N C and Nimmo J J C1983Phys. Lett.95A 1
Hirota R 1986J. Phys. Soc. Japan55 2137
Saitoh N and Saito S 1990J. Phys. A: Math. Gen.23 3017

[11] Saito S 1996 Dual resonance model solves the Yang–Baxter equationTMU Preprint solv-int 9704008
[12] Devaney R L 1989An Introduction to Chaotic Dynamical Systems2nd edn (London: Addison-Wesley)
[13] Saitoh N, Saito S, Shimizu A and Yoshida K 1996J. Phys. A: Math. Gen.29 1831


